Cal bioengineer launches yet another startup


Jay Keasling, the UC Berkeley bioengineer who launched the now-stricken Amyris [previously, and see below], which failed in its efforts to produce a cost-effective agrofuel and switched to producing more costly chemicals for the cosmetic trade, has started yet another company, which is setting out to produce costlier chemicals, with agrofuel “another possible product.”

Lygos is, like Amyris, named after a plant thought by the women of ancient Athens to promote infertility, which led them to sleep under its branches to prevent conception and perhaps, if one’s superstitious, not the best name choice for a startup its creators hope will be pregnant with lucrative new ideas. But then it’s also used as both a laxative and a diuretic in folk medicine, so maybe those lucrative ideas will flow anyway.

While the San Francisco Business Times leads with a declaration that Lygos is an agrofuel company, the official announcement from Lawrence Berkeley National Laboratory’s Julie Chao says the emphasis is on the costlier chemicals.

Here’s her report from the LBNL website:

Petrochemicals are found in thousands of everyday products, from clothing to food preservatives to plastics. Imagine if many of those chemicals could be made without petroleum and instead with biological processes. Using the tools of synthetic biology scientists at the Department of Energy’s Joint BioEnergy Institute (JBEI) have done just that, and now a startup company has been formed to commercialize the technology.

Lygos is the first company to spin out of JBEI, a Department of Energy research center established in 2007 to pursue breakthroughs in the production of cellulosic biofuels. The five company co-founders include Jay Keasling, director of JBEI and a world authority on synthetic biology and metabolic engineering who holds joint appointments with the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley.

The process uses sugar as a feedstock, which is metabolized by designer microorganisms to yield any of a number of molecules. “This is the future of chemical manufacturing,” said Lygos CEO Jeffrey (Clem) Fortman, one of the company co-founders and also a JBEI researcher. “Oil is becoming expensive, and at some point it will be depleted. Sugar is getting more expensive, but it’s still lagging way behind oil.”

The Lygos technology repurposes a class of proteins that have been used for decades to make antibiotics and other drugs. Polyketide synthases (PKS) are a family of multifunctional enzymes that produce polyketides, hydrocarbon chains that serve as a backbone for many widely used natural and synthetic organic chemicals. The JBEI researchers redesigned the PKS process, or pathway, by mixing and matching genetic information to produce compounds that were never made by nature but have become the ubiquitous synthetic materials of our everyday lives.

The method can produce compounds such as nylon precursors, polyester components, styrene and propylene. The latter two are widely used in plastics and countless consumer products. Besides producing products currently made with petroleum, the Lygos technology can also be used to engineer products with characteristics that have never been achieved before, or that have been too expensive to produce otherwise. Biofuels are another possible product.

Although other companies are using biological processes to make certain compounds, what’s superior about Lygos’ technology is that it is a platform as well as a process, theoretically allowing for a huge number of molecules. PKS are composed of discrete modules, each catalyzing the chain growth of a single step. Synthesis of a desired compound can be programmed by selection and genetic manipulation of PKS.

“It’s a broad array of things we can make; estimates are in the tens of thousands, or even higher, of different molecules we could potentially make,” said Fortman. “However the mass market compounds are far fewer than that.”

The company has achieved production of a number of petrochemical replacements at laboratory scale. It is currently optimizing the production of its first target compounds.

Removing petroleum from chemical manufacturing would remove the risk of producing the level of greenhouse gases, hazardous waste and environmental pollution that is associated with production of petrochemicals. The Lygos process is nonpolluting and promises to be nearly carbon neutral. Although bioprocesses do generate carbon dioxide, because more feedstock is planted—in this case, sugar—atmospheric carbon dioxide is captured by the plants. By contrast, in the case of petrochemicals, hydrocarbons are pulled from the ground and emit carbon dioxide when combusted.

The other three company cofounders are Leonard Katz, Eric Steen and Jeffrey Dietrich. Steen, Dietrich and Fortman all started as UC Berkeley graduate students and postdoctoral fellows at JBEI. Dietrich now works full-time for Lygos. Katz is research director at the Synthetic Biology Engineering Research Center (SynBERC), an NSF-funded program within UC Berkeley.

Lygos is not the first startup for Keasling. Also using tools of synthetic biology, Keasling found a way to engineer artemisinin, a powerful anti-malaria drug. That technology was licensed by Emeryville, California-based Amyris, of which Keasling is a cofounder. He is also a cofounder of LS9, a biotechnology company based in South San Francisco, California.

Lygos has raised a small amount of capital from private sources and also has a Department of Energy grant; the company is actively fundraising and is currently located at the QB3 East Bay Innovation Center in Berkeley, California.

“As we get better at optimizing the process, the number of things that we can make that will be cost-competitive with petroleum is just going to keep growing,” Fortman said.

About these ads

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s